Funktionsweise des TZG
Aus VW-ILTIS Wiki
(Die Seite wurde neu angelegt: „=Funktionsweise des TZG= Das TZG hat zum einen die Aufgabe aus der Sinus-förmigen Steuerspannung einen Rechteck-Impuls mit vorgegebenem Puls-Pausen-Verhältnis …“)
Zum nächsten Versionsunterschied →
Version vom 21. März 2016, 17:19 Uhr
Funktionsweise des TZG
Das TZG hat zum einen die Aufgabe aus der Sinus-förmigen Steuerspannung einen Rechteck-Impuls mit vorgegebenem Puls-Pausen-Verhältnis (=Schließwinkel) zu machen. Daneben gibt es eine weitere wichtige Funktion, nämlich die Abschaltung der Zündspule im Stand:
Wird die Zündung eingeschaltet, der Motor aber nicht gestartet, so ist das TZG zunächst durchgeschaltet und es fließt ein hoher Strom durch die Vorwiderstände und die Zündspule - dies entspricht dem Zustand bei einer Kontaktzündung, wenn der Motor zufällig in einer Position stehen geblieben ist, bei der der Kontakt geschlossen ist. Dieser hohe Strom kann über längere Zeit zur Erwärmung der Zündspule (wie oben ausgeführt muss die Zündspule fast 50W "verheizen") und der Vorwiderstände führen, im Extremfall kann das zum Ausfall führen. Damit dies nicht passiert ist im TZG des Iltis eine Abschaltung eingebaut, die nach ca. 4-6 Sekunden den Strom durch die Zündspule wieder abschaltet.
Hier das Schaltbild und die Stückliste des TZG aus der TDV 2320_050-40 (F) im Anhang mit einer kurzen Erläuterung der Funktion der wichtigsten Komponenten.
D2 dient zum Schutz der Schaltung vor Verpolung.
Die Eingangsstufe, bestehend aus D1, D3, T1, T2, C1, C2, C3, C7, R1, R2, R3, R4, R5, R6, R7 und erzeugt aus der sinsuförmigen Steuerspannung eine sägezahnförmige Ansteuerung für die Zwischenstufe. Die Flankensteilheit des Sägezahns wird durch R4-R7 und C3 vorgegeben und ist relevant für das Plus-Pausen-Verhältnis und damit für den Schließwinkel.
Die Zwischenstufe besteht aus R8, T3, die die sägezahnförmige Spannung zu einem Rechteck mit einer variablen Pulslänge umformt.
Der Elko C4 ist zuständig für die Entkopplung der Zwischenstufe von der Endstufe und sorgt dafür, dass im Ruhezustand nach einigen Sekunden die Endstufe gesperrt wird und damit nicht unnötig Strom durch die Zündspule und die Vorwiderstände fließt.
Die Endstufe, bestehend aus D4, D5, D6, D7, T4, T5, R9, R10, R11, R12, R13, C5, C6 schaltet, gesteuert durch die Rechteck-Ansteuerung den Strom durch die Zündspule. Die Z-Dioden D6, D7 mit jeweils 180V Durchschlagspannung schützen dabei den Leistungstransistor T5 vor den Spannungsspitzen, die beim Abschalten des Stroms durch die Zündspule entstehen.
Funktion des TZG im Detail
Im Ruhezustand, d.h. ohne Steuerspannung, wird C2 über R2 und R3 schnell auf rund 1V aufgeladen, bis T1 durchschaltet. Dadurch wird T2 gesperrt und der Kondensator C3 wird über R6 geladen. T3 ist dann durchgeschaltet. Ohne die bereits angesprochene Entkopplung der Endstufe über C4 wären auch T4 und T5 dauerhaft durchgeschaltet, Details dazu weiter unten.
Im Betrieb kann die Funktion sehr gut über Messungen an den in der TDV angegebenen Meßpunkte nachvollzogen werden, ich habe entsprechende Oszillogramme jeweils beigefügt mit Angabe des Messpunkts.
Die Diode D1 lässt von der Sinusförmigen Steuerspannung aus dem Verteiler nur die negative Halbwelle durch. Während der positiven Halbwelle wird, wie im Ruhezustand, C2 über R2 und R3 schnell auf ca. 1V aufgeladen, dann schaltet T1 durch. Dadurch sperrt T2, der zuvor durchgeschaltet war (T1 und T2 bilden einen Inverter). C3 wird über R6 geladen (ansteigende Flanke des Sägezahns).
Während der negativen Halbwelle wird über R1 der Kondensator C2 bis auf ca. -0,7V entladen, begrenzt durch D3. Durch die Entladung von C2 sperrt der Transistor T1, damit schaltet T2 durch, weil die Basis von T2 über R4 auf ca. 1,5 V gezogen wird. C3 wird über R5 schnell entladen (Abfallende Flanke des Sägezahns).
An der Basis von T3 liegt der durch C3/R7 spannungsmäßig invertierte und um 180Grad phasenverschobene Sägezahn an, d.h. in der positiven Halbwelle ist T3 durchgeschaltet, mit Beginn der negativen Halbwelle wird die Basis von T3 auf ca. -4 V gezogen und T3 sperrt sofort. Die Spannung stiegt dann im Sägezahnprofil während der negativen Halbwelle bis auf -0,7V an, dann schaltet T3, bedingt durch seine hohe Stromverstärkung, sehr schnell durch. Im Ergebnis entsteht am Kollektor von T3 eine Rechteck-Spannung, deren Puls-Pausen-Verhältnis durch die Steilheit der Sägezahn-Flanke gesteuert wird. Wird das TZG im Ruhezustand nicht angesteuert, dann ist T3 ebenfalls wie in der positiven Halbwelle durchgeschaltet.
Über C4 wird die Zwischenstufe von der Endstufe gleichspannungsmäßig entkoppelt, im Ruhezustand ist T3 dauerhaft durchgeschaltet, ohne C4 wären somit auch T4 und T5 durchgeschaltet, was dazu führen würde, dass ein Dauerstom durch die Vorwiderstände und die Zündspule fließt. Im Ruhezustand wird aber C4 über den Basisstrom von T4 über R9 langsam aufgeladen, bis nach ca. 4-6 Sekunden T4 sperrt. Die Diode D4 ist eine Schutzdiode für T4, damit beim ersten Schalten nach dem Ruhezustand und damit geladenem C4 die Spannung an der Basis von T4 nicht über Versorgungsspannung + 0,7V ansteigt.
Der PNP-Transistor T4 dient als Impedanzwandler für die niederohmige Ansteuerung des Schalt-Leistungstransistors T5. Der BUX 37 (T5) ist ein Darlington-Transistor und hat dennoch, wie alle Schalt-Leistungstransistoren nur eine recht geringe Stromverstärkung. Um die notwendigen hohen Ströme von ca. 5A schalten zu können, muss T5 mit einem Strom von ca. 100mA angesteuert werden. Dieser Steuerstrom wird durch T4 geschaltete und durch R10/11 (parallel geschaltet, also 235Ω) begrenzt.
Die beiden 180V Z-Dioden D6 und D7 schützen T5, der maximal 400V aushält, vor den Spannungsspitzen, die beim Abschalten durch die Selbstinduktion in der Zündspule entstehen. Die Z-Dioden sind in Reihe geschaltet und haben damit eine Durchbruchsspannung von 360V. Wichtig! Es dürfen hier, wie anderswo fälschlich geschrieben, keinesfalls andere Z-Dioden mit nur wenigen Volt Durchbruchsspannung verwendet werden.